Individual Submission Summary
Share...

Direct link:

How Much Should You Trust Power Calculations? Power Analyses as Estimations

Sat, September 7, 2:00 to 3:30pm, Pennsylvania Convention Center (PCC), 106B

Abstract

With the surge of randomized experiments and the introduction of pre-analysis plans, today’s political scientists routinely use power analysis when designing their empirical research. An often neglected fact about power analysis in practice, however, is that it requires knowledge about the true values of key parameters, such as the effect size. Since researchers rarely possess definitive knowledge of these parameter values, they often rely on auxiliary information to make their best guesses. For example, survey researchers commonly use pilot studies to explore alternative treatments and question formats, obtaining effect size estimates to be used in power calculations along the way. Field experimentalists often use evidence from similar studies in the past to calculate the minimum required sample size for their proposed experiment. Common across these practices is the hidden assumption that uncertainties about those often empirically obtained parameter values can safely be neglected for the purpose of power calculation.

In this paper, we show that such assumptions are often consequential and sometimes dangerous. We propose a conceptual distinction between two types of power analysis: empirical and non-empirical. We then argue that the former should be viewed as an estimation problem, such that their properties as estimators (e.g., bias, sampling variance) can be formally quantified and investigated. Specifically, we analyze two commonly used variants of empirical power analysis – power estimation and minimum required sample size (MRSS) estimation – asking how reliable these analyses can be under scenarios resembling typical empirical applications in political science. The results of our analytical and simulation-based investigation reveal that these estimators are likely to perform rather poorly in most empirically relevant situations. We offer practical guidelines for empirical researchers on when to (and not to) trust power analysis results.

Authors